Metamath Proof Explorer


Theorem uvcvval

Description: Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcfval.u U = R unitVec I
uvcfval.o 1 ˙ = 1 R
uvcfval.z 0 ˙ = 0 R
Assertion uvcvval R V I W J I K I U J K = if K = J 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 uvcfval.u U = R unitVec I
2 uvcfval.o 1 ˙ = 1 R
3 uvcfval.z 0 ˙ = 0 R
4 1 2 3 uvcval R V I W J I U J = k I if k = J 1 ˙ 0 ˙
5 4 fveq1d R V I W J I U J K = k I if k = J 1 ˙ 0 ˙ K
6 5 adantr R V I W J I K I U J K = k I if k = J 1 ˙ 0 ˙ K
7 simpr R V I W J I K I K I
8 2 fvexi 1 ˙ V
9 3 fvexi 0 ˙ V
10 8 9 ifex if K = J 1 ˙ 0 ˙ V
11 eqeq1 k = K k = J K = J
12 11 ifbid k = K if k = J 1 ˙ 0 ˙ = if K = J 1 ˙ 0 ˙
13 eqid k I if k = J 1 ˙ 0 ˙ = k I if k = J 1 ˙ 0 ˙
14 12 13 fvmptg K I if K = J 1 ˙ 0 ˙ V k I if k = J 1 ˙ 0 ˙ K = if K = J 1 ˙ 0 ˙
15 7 10 14 sylancl R V I W J I K I k I if k = J 1 ˙ 0 ˙ K = if K = J 1 ˙ 0 ˙
16 6 15 eqtrd R V I W J I K I U J K = if K = J 1 ˙ 0 ˙