Metamath Proof Explorer


Theorem uvcvvcl

Description: A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcfval.u U = R unitVec I
uvcfval.o 1 ˙ = 1 R
uvcfval.z 0 ˙ = 0 R
Assertion uvcvvcl R V I W J I K I U J K 0 ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 uvcfval.u U = R unitVec I
2 uvcfval.o 1 ˙ = 1 R
3 uvcfval.z 0 ˙ = 0 R
4 1 2 3 uvcvval R V I W J I K I U J K = if K = J 1 ˙ 0 ˙
5 2 fvexi 1 ˙ V
6 3 fvexi 0 ˙ V
7 ifpr 1 ˙ V 0 ˙ V if K = J 1 ˙ 0 ˙ 1 ˙ 0 ˙
8 5 6 7 mp2an if K = J 1 ˙ 0 ˙ 1 ˙ 0 ˙
9 prcom 1 ˙ 0 ˙ = 0 ˙ 1 ˙
10 8 9 eleqtri if K = J 1 ˙ 0 ˙ 0 ˙ 1 ˙
11 4 10 eqeltrdi R V I W J I K I U J K 0 ˙ 1 ˙