Metamath Proof Explorer


Theorem uvtx2vtx1edg

Description: If a graph has two vertices, and there is an edge between the vertices, then each vertex is universal. (Contributed by AV, 1-Nov-2020) (Revised by AV, 25-Mar-2021) (Proof shortened by AV, 14-Feb-2022)

Ref Expression
Hypotheses uvtxel.v V = Vtx G
isuvtx.e E = Edg G
Assertion uvtx2vtx1edg V = 2 V E v V v UnivVtx G

Proof

Step Hyp Ref Expression
1 uvtxel.v V = Vtx G
2 isuvtx.e E = Edg G
3 1 2 nbgr2vtx1edg V = 2 V E v V n V v n G NeighbVtx v
4 1 uvtxel v UnivVtx G v V n V v n G NeighbVtx v
5 4 a1i V = 2 V E v UnivVtx G v V n V v n G NeighbVtx v
6 5 baibd V = 2 V E v V v UnivVtx G n V v n G NeighbVtx v
7 6 ralbidva V = 2 V E v V v UnivVtx G v V n V v n G NeighbVtx v
8 3 7 mpbird V = 2 V E v V v UnivVtx G