Metamath Proof Explorer


Theorem uvtx2vtx1edgb

Description: If a hypergraph has two vertices, there is an edge between the vertices iff each vertex is universal. (Contributed by AV, 3-Nov-2020)

Ref Expression
Hypotheses uvtxel.v V = Vtx G
isuvtx.e E = Edg G
Assertion uvtx2vtx1edgb G UHGraph V = 2 V E v V v UnivVtx G

Proof

Step Hyp Ref Expression
1 uvtxel.v V = Vtx G
2 isuvtx.e E = Edg G
3 1 2 nbuhgr2vtx1edgb G UHGraph V = 2 V E v V n V v n G NeighbVtx v
4 1 uvtxel v UnivVtx G v V n V v n G NeighbVtx v
5 4 a1i G UHGraph V = 2 v UnivVtx G v V n V v n G NeighbVtx v
6 5 baibd G UHGraph V = 2 v V v UnivVtx G n V v n G NeighbVtx v
7 6 bicomd G UHGraph V = 2 v V n V v n G NeighbVtx v v UnivVtx G
8 7 ralbidva G UHGraph V = 2 v V n V v n G NeighbVtx v v V v UnivVtx G
9 3 8 bitrd G UHGraph V = 2 V E v V v UnivVtx G