Metamath Proof Explorer


Theorem uvtxel

Description: A universal vertex, i.e. an element of the set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 29-Oct-2020) (Revised by AV, 14-Feb-2022)

Ref Expression
Hypothesis uvtxel.v V = Vtx G
Assertion uvtxel N UnivVtx G N V n V N n G NeighbVtx N

Proof

Step Hyp Ref Expression
1 uvtxel.v V = Vtx G
2 sneq v = N v = N
3 2 difeq2d v = N V v = V N
4 oveq2 v = N G NeighbVtx v = G NeighbVtx N
5 4 eleq2d v = N n G NeighbVtx v n G NeighbVtx N
6 3 5 raleqbidv v = N n V v n G NeighbVtx v n V N n G NeighbVtx N
7 1 uvtxval UnivVtx G = v V | n V v n G NeighbVtx v
8 6 7 elrab2 N UnivVtx G N V n V N n G NeighbVtx N