Database
GRAPH THEORY
Undirected graphs
Neighbors, complete graphs and universal vertices
Universal vertices
uvtxisvtx
Metamath Proof Explorer
Description: A universal vertex is a vertex. (Contributed by Alexander van der
Vekens , 12-Oct-2017) (Revised by AV , 30-Oct-2020) (Proof shortened by AV , 14-Feb-2022)
Ref
Expression
Hypothesis
uvtxel.v
⊢ V = Vtx ⁡ G
Assertion
uvtxisvtx
⊢ N ∈ UnivVtx ⁡ G → N ∈ V
Proof
Step
Hyp
Ref
Expression
1
uvtxel.v
⊢ V = Vtx ⁡ G
2
1
uvtxel
⊢ N ∈ UnivVtx ⁡ G ↔ N ∈ V ∧ ∀ n ∈ V ∖ N n ∈ G NeighbVtx N
3
2
simplbi
⊢ N ∈ UnivVtx ⁡ G → N ∈ V