Metamath Proof Explorer


Theorem uvtxnbgrvtx

Description: A universal vertex is neighbor of all other vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 30-Oct-2020)

Ref Expression
Hypothesis uvtxel.v V = Vtx G
Assertion uvtxnbgrvtx N UnivVtx G v V N N G NeighbVtx v

Proof

Step Hyp Ref Expression
1 uvtxel.v V = Vtx G
2 1 vtxnbuvtx N UnivVtx G n V N n G NeighbVtx N
3 eleq1w n = v n G NeighbVtx N v G NeighbVtx N
4 3 rspcva v V N n V N n G NeighbVtx N v G NeighbVtx N
5 nbgrsym v G NeighbVtx N N G NeighbVtx v
6 5 a1i N UnivVtx G v G NeighbVtx N N G NeighbVtx v
7 4 6 syl5ibcom v V N n V N n G NeighbVtx N N UnivVtx G N G NeighbVtx v
8 7 expcom n V N n G NeighbVtx N v V N N UnivVtx G N G NeighbVtx v
9 8 com23 n V N n G NeighbVtx N N UnivVtx G v V N N G NeighbVtx v
10 2 9 mpcom N UnivVtx G v V N N G NeighbVtx v
11 10 ralrimiv N UnivVtx G v V N N G NeighbVtx v