Metamath Proof Explorer


Theorem uvtxnbvtxm1

Description: A universal vertex has n - 1 neighbors in a finite simple graph with n vertices. A biconditional version of nbusgrvtxm1uvtx resp. uvtxnm1nbgr . (Contributed by Alexander van der Vekens, 14-Jul-2018) (Revised by AV, 16-Dec-2020)

Ref Expression
Hypothesis uvtxnm1nbgr.v V = Vtx G
Assertion uvtxnbvtxm1 G FinUSGraph U V U UnivVtx G G NeighbVtx U = V 1

Proof

Step Hyp Ref Expression
1 uvtxnm1nbgr.v V = Vtx G
2 1 uvtxnm1nbgr G FinUSGraph U UnivVtx G G NeighbVtx U = V 1
3 2 ex G FinUSGraph U UnivVtx G G NeighbVtx U = V 1
4 3 adantr G FinUSGraph U V U UnivVtx G G NeighbVtx U = V 1
5 1 nbusgrvtxm1uvtx G FinUSGraph U V G NeighbVtx U = V 1 U UnivVtx G
6 4 5 impbid G FinUSGraph U V U UnivVtx G G NeighbVtx U = V 1