Metamath Proof Explorer


Theorem uvtxnm1nbgr

Description: A universal vertex has n - 1 neighbors in a finite graph with n vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 3-Nov-2020)

Ref Expression
Hypothesis uvtxnm1nbgr.v V = Vtx G
Assertion uvtxnm1nbgr G FinUSGraph N UnivVtx G G NeighbVtx N = V 1

Proof

Step Hyp Ref Expression
1 uvtxnm1nbgr.v V = Vtx G
2 1 uvtxnbgr N UnivVtx G G NeighbVtx N = V N
3 2 adantl G FinUSGraph N UnivVtx G G NeighbVtx N = V N
4 3 fveq2d G FinUSGraph N UnivVtx G G NeighbVtx N = V N
5 1 fusgrvtxfi G FinUSGraph V Fin
6 1 uvtxisvtx N UnivVtx G N V
7 6 snssd N UnivVtx G N V
8 hashssdif V Fin N V V N = V N
9 5 7 8 syl2an G FinUSGraph N UnivVtx G V N = V N
10 hashsng N UnivVtx G N = 1
11 10 adantl G FinUSGraph N UnivVtx G N = 1
12 11 oveq2d G FinUSGraph N UnivVtx G V N = V 1
13 4 9 12 3eqtrd G FinUSGraph N UnivVtx G G NeighbVtx N = V 1