Metamath Proof Explorer


Theorem uvtxusgr

Description: The set of all universal vertices of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 31-Oct-2020)

Ref Expression
Hypotheses uvtxnbgr.v V = Vtx G
uvtxusgr.e E = Edg G
Assertion uvtxusgr G USGraph UnivVtx G = n V | k V n k n E

Proof

Step Hyp Ref Expression
1 uvtxnbgr.v V = Vtx G
2 uvtxusgr.e E = Edg G
3 1 uvtxval UnivVtx G = n V | k V n k G NeighbVtx n
4 2 nbusgreledg G USGraph k G NeighbVtx n k n E
5 4 ralbidv G USGraph k V n k G NeighbVtx n k V n k n E
6 5 rabbidv G USGraph n V | k V n k G NeighbVtx n = n V | k V n k n E
7 3 6 syl5eq G USGraph UnivVtx G = n V | k V n k n E