Metamath Proof Explorer


Theorem uvtxusgrel

Description: A universal vertex, i.e. an element of the set of all universal vertices, of a simple graph. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 31-Oct-2020)

Ref Expression
Hypotheses uvtxnbgr.v V = Vtx G
uvtxusgr.e E = Edg G
Assertion uvtxusgrel G USGraph N UnivVtx G N V k V N k N E

Proof

Step Hyp Ref Expression
1 uvtxnbgr.v V = Vtx G
2 uvtxusgr.e E = Edg G
3 1 2 uvtxusgr G USGraph UnivVtx G = v V | k V v k v E
4 3 eleq2d G USGraph N UnivVtx G N v V | k V v k v E
5 sneq v = N v = N
6 5 difeq2d v = N V v = V N
7 preq2 v = N k v = k N
8 7 eleq1d v = N k v E k N E
9 6 8 raleqbidv v = N k V v k v E k V N k N E
10 9 elrab N v V | k V v k v E N V k V N k N E
11 4 10 bitrdi G USGraph N UnivVtx G N V k V N k N E