Metamath Proof Explorer


Theorem uvtxval

Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 29-Oct-2020) (Revised by AV, 14-Feb-2022)

Ref Expression
Hypothesis uvtxval.v V = Vtx G
Assertion uvtxval UnivVtx G = v V | n V v n G NeighbVtx v

Proof

Step Hyp Ref Expression
1 uvtxval.v V = Vtx G
2 df-uvtx UnivVtx = g V v Vtx g | n Vtx g v n g NeighbVtx v
3 fveq2 g = G Vtx g = Vtx G
4 3 1 eqtr4di g = G Vtx g = V
5 4 difeq1d g = G Vtx g v = V v
6 oveq1 g = G g NeighbVtx v = G NeighbVtx v
7 6 eleq2d g = G n g NeighbVtx v n G NeighbVtx v
8 5 7 raleqbidv g = G n Vtx g v n g NeighbVtx v n V v n G NeighbVtx v
9 2 8 fvmptrabfv UnivVtx G = v Vtx G | n V v n G NeighbVtx v
10 1 eqcomi Vtx G = V
11 10 rabeqi v Vtx G | n V v n G NeighbVtx v = v V | n V v n G NeighbVtx v
12 9 11 eqtri UnivVtx G = v V | n V v n G NeighbVtx v