Metamath Proof Explorer


Theorem uz0

Description: The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion uz0 ¬ M M =

Proof

Step Hyp Ref Expression
1 dmuz dom =
2 1 eqcomi = dom
3 2 eleq2i M M dom
4 3 notbii ¬ M ¬ M dom
5 4 biimpi ¬ M ¬ M dom
6 ndmfv ¬ M dom M =
7 5 6 syl ¬ M M =