Metamath Proof Explorer


Theorem uz11

Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005)

Ref Expression
Assertion uz11 MM=NM=N

Proof

Step Hyp Ref Expression
1 uzid MMM
2 eleq2 M=NMMMN
3 eluzel2 MNN
4 2 3 biimtrdi M=NMMN
5 1 4 mpan9 MM=NN
6 uzid NNN
7 eleq2 M=NNMNN
8 6 7 imbitrrid M=NNNM
9 eluzle NMMN
10 8 9 syl6 M=NNMN
11 1 2 imbitrid M=NMMN
12 eluzle MNNM
13 11 12 syl6 M=NMNM
14 10 13 anim12d M=NNMMNNM
15 14 impl M=NNMMNNM
16 15 ancoms MM=NNMNNM
17 16 anassrs MM=NNMNNM
18 zre MM
19 zre NN
20 letri3 MNM=NMNNM
21 18 19 20 syl2an MNM=NMNNM
22 21 adantlr MM=NNM=NMNNM
23 17 22 mpbird MM=NNM=N
24 5 23 mpdan MM=NM=N
25 24 ex MM=NM=N
26 fveq2 M=NM=N
27 25 26 impbid1 MM=NM=N