Metamath Proof Explorer


Theorem uz11

Description: The upper integers function is one-to-one. (Contributed by NM, 12-Dec-2005)

Ref Expression
Assertion uz11 M M = N M = N

Proof

Step Hyp Ref Expression
1 uzid M M M
2 eleq2 M = N M M M N
3 eluzel2 M N N
4 2 3 syl6bi M = N M M N
5 1 4 mpan9 M M = N N
6 uzid N N N
7 eleq2 M = N N M N N
8 6 7 syl5ibr M = N N N M
9 eluzle N M M N
10 8 9 syl6 M = N N M N
11 1 2 syl5ib M = N M M N
12 eluzle M N N M
13 11 12 syl6 M = N M N M
14 10 13 anim12d M = N N M M N N M
15 14 impl M = N N M M N N M
16 15 ancoms M M = N N M N N M
17 16 anassrs M M = N N M N N M
18 zre M M
19 zre N N
20 letri3 M N M = N M N N M
21 18 19 20 syl2an M N M = N M N N M
22 21 adantlr M M = N N M = N M N N M
23 17 22 mpbird M M = N N M = N
24 5 23 mpdan M M = N M = N
25 24 ex M M = N M = N
26 fveq2 M = N M = N
27 25 26 impbid1 M M = N M = N