Metamath Proof Explorer


Theorem uz2m1nn

Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Assertion uz2m1nn N 2 N 1

Proof

Step Hyp Ref Expression
1 eluz2b1 N 2 N 1 < N
2 1z 1
3 znnsub 1 N 1 < N N 1
4 2 3 mpan N 1 < N N 1
5 4 biimpa N 1 < N N 1
6 1 5 sylbi N 2 N 1