Metamath Proof Explorer


Theorem uz3m2nn

Description: An integer greater than or equal to 3 decreased by 2 is a positive integer, analogous to uz2m1nn . (Contributed by Alexander van der Vekens, 17-Sep-2018)

Ref Expression
Assertion uz3m2nn N 3 N 2

Proof

Step Hyp Ref Expression
1 eluz2 N 3 3 N 3 N
2 2lt3 2 < 3
3 2re 2
4 3re 3
5 zre N N
6 ltletr 2 3 N 2 < 3 3 N 2 < N
7 3 4 5 6 mp3an12i N 2 < 3 3 N 2 < N
8 2 7 mpani N 3 N 2 < N
9 8 imp N 3 N 2 < N
10 9 3adant1 3 N 3 N 2 < N
11 1 10 sylbi N 3 2 < N
12 2nn 2
13 eluzge3nn N 3 N
14 nnsub 2 N 2 < N N 2
15 12 13 14 sylancr N 3 2 < N N 2
16 11 15 mpbid N 3 N 2