Metamath Proof Explorer


Theorem uzdisj

Description: The first N elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014)

Ref Expression
Assertion uzdisj M N 1 N =

Proof

Step Hyp Ref Expression
1 elinel2 k M N 1 N k N
2 eluzle k N N k
3 1 2 syl k M N 1 N N k
4 eluzel2 k N N
5 1 4 syl k M N 1 N N
6 eluzelz k N k
7 1 6 syl k M N 1 N k
8 zlem1lt N k N k N 1 < k
9 5 7 8 syl2anc k M N 1 N N k N 1 < k
10 3 9 mpbid k M N 1 N N 1 < k
11 7 zred k M N 1 N k
12 peano2zm N N 1
13 5 12 syl k M N 1 N N 1
14 13 zred k M N 1 N N 1
15 elinel1 k M N 1 N k M N 1
16 elfzle2 k M N 1 k N 1
17 15 16 syl k M N 1 N k N 1
18 11 14 17 lensymd k M N 1 N ¬ N 1 < k
19 10 18 pm2.21dd k M N 1 N k
20 19 ssriv M N 1 N
21 ss0 M N 1 N M N 1 N =
22 20 21 ax-mp M N 1 N =