Metamath Proof Explorer


Theorem uzenom

Description: An upper integer set is denumerable. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis uzinf.1 Z = M
Assertion uzenom M Z ω

Proof

Step Hyp Ref Expression
1 uzinf.1 Z = M
2 fveq2 M = if M M 0 M = if M M 0
3 1 2 eqtrid M = if M M 0 Z = if M M 0
4 3 breq1d M = if M M 0 Z ω if M M 0 ω
5 omex ω V
6 fvex if M M 0 V
7 0z 0
8 7 elimel if M M 0
9 eqid rec x V x + 1 if M M 0 ω = rec x V x + 1 if M M 0 ω
10 8 9 om2uzf1oi rec x V x + 1 if M M 0 ω : ω 1-1 onto if M M 0
11 f1oen2g ω V if M M 0 V rec x V x + 1 if M M 0 ω : ω 1-1 onto if M M 0 ω if M M 0
12 5 6 10 11 mp3an ω if M M 0
13 12 ensymi if M M 0 ω
14 4 13 dedth M Z ω