Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Miscellaneous theorems about integers
uzenom
Next ⟩
uzinf
Metamath Proof Explorer
Ascii
Unicode
Theorem
uzenom
Description:
An upper integer set is denumerable.
(Contributed by
Mario Carneiro
, 15-Oct-2015)
Ref
Expression
Hypothesis
uzinf.1
⊢
Z
=
ℤ
≥
M
Assertion
uzenom
⊢
M
∈
ℤ
→
Z
≈
ω
Proof
Step
Hyp
Ref
Expression
1
uzinf.1
⊢
Z
=
ℤ
≥
M
2
fveq2
⊢
M
=
if
M
∈
ℤ
M
0
→
ℤ
≥
M
=
ℤ
≥
if
M
∈
ℤ
M
0
3
1
2
eqtrid
⊢
M
=
if
M
∈
ℤ
M
0
→
Z
=
ℤ
≥
if
M
∈
ℤ
M
0
4
3
breq1d
⊢
M
=
if
M
∈
ℤ
M
0
→
Z
≈
ω
↔
ℤ
≥
if
M
∈
ℤ
M
0
≈
ω
5
omex
⊢
ω
∈
V
6
fvex
⊢
ℤ
≥
if
M
∈
ℤ
M
0
∈
V
7
0z
⊢
0
∈
ℤ
8
7
elimel
⊢
if
M
∈
ℤ
M
0
∈
ℤ
9
eqid
⊢
rec
⁡
x
∈
V
⟼
x
+
1
if
M
∈
ℤ
M
0
↾
ω
=
rec
⁡
x
∈
V
⟼
x
+
1
if
M
∈
ℤ
M
0
↾
ω
10
8
9
om2uzf1oi
⊢
rec
⁡
x
∈
V
⟼
x
+
1
if
M
∈
ℤ
M
0
↾
ω
:
ω
⟶
1-1 onto
ℤ
≥
if
M
∈
ℤ
M
0
11
f1oen2g
⊢
ω
∈
V
∧
ℤ
≥
if
M
∈
ℤ
M
0
∈
V
∧
rec
⁡
x
∈
V
⟼
x
+
1
if
M
∈
ℤ
M
0
↾
ω
:
ω
⟶
1-1 onto
ℤ
≥
if
M
∈
ℤ
M
0
→
ω
≈
ℤ
≥
if
M
∈
ℤ
M
0
12
5
6
10
11
mp3an
⊢
ω
≈
ℤ
≥
if
M
∈
ℤ
M
0
13
12
ensymi
⊢
ℤ
≥
if
M
∈
ℤ
M
0
≈
ω
14
4
13
dedth
⊢
M
∈
ℤ
→
Z
≈
ω