Metamath Proof Explorer


Theorem uzfissfz

Description: For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses uzfissfz.m φ M
uzfissfz.z Z = M
uzfissfz.a φ A Z
uzfissfz.fi φ A Fin
Assertion uzfissfz φ k Z A M k

Proof

Step Hyp Ref Expression
1 uzfissfz.m φ M
2 uzfissfz.z Z = M
3 uzfissfz.a φ A Z
4 uzfissfz.fi φ A Fin
5 uzid M M M
6 1 5 syl φ M M
7 2 a1i φ Z = M
8 7 eqcomd φ M = Z
9 6 8 eleqtrd φ M Z
10 9 adantr φ A = M Z
11 id A = A =
12 0ss M M
13 12 a1i A = M M
14 11 13 eqsstrd A = A M M
15 14 adantl φ A = A M M
16 oveq2 k = M M k = M M
17 16 sseq2d k = M A M k A M M
18 17 rspcev M Z A M M k Z A M k
19 10 15 18 syl2anc φ A = k Z A M k
20 3 adantr φ ¬ A = A Z
21 uzssz M
22 2 21 eqsstri Z
23 22 a1i φ Z
24 3 23 sstrd φ A
25 24 adantr φ ¬ A = A
26 11 necon3bi ¬ A = A
27 26 adantl φ ¬ A = A
28 4 adantr φ ¬ A = A Fin
29 suprfinzcl A A A Fin sup A < A
30 25 27 28 29 syl3anc φ ¬ A = sup A < A
31 20 30 sseldd φ ¬ A = sup A < Z
32 1 ad2antrr φ ¬ A = j A M
33 22 31 sseldi φ ¬ A = sup A <
34 33 adantr φ ¬ A = j A sup A <
35 25 sselda φ ¬ A = j A j
36 32 34 35 3jca φ ¬ A = j A M sup A < j
37 3 sselda φ j A j Z
38 2 a1i φ j A Z = M
39 37 38 eleqtrd φ j A j M
40 eluzle j M M j
41 39 40 syl φ j A M j
42 41 adantlr φ ¬ A = j A M j
43 zssre
44 24 43 sstrdi φ A
45 44 ad2antrr φ ¬ A = j A A
46 27 adantr φ ¬ A = j A A
47 fimaxre2 A A Fin x y A y x
48 44 4 47 syl2anc φ x y A y x
49 48 ad2antrr φ ¬ A = j A x y A y x
50 simpr φ ¬ A = j A j A
51 suprub A A x y A y x j A j sup A <
52 45 46 49 50 51 syl31anc φ ¬ A = j A j sup A <
53 36 42 52 jca32 φ ¬ A = j A M sup A < j M j j sup A <
54 elfz2 j M sup A < M sup A < j M j j sup A <
55 53 54 sylibr φ ¬ A = j A j M sup A <
56 55 ralrimiva φ ¬ A = j A j M sup A <
57 dfss3 A M sup A < j A j M sup A <
58 56 57 sylibr φ ¬ A = A M sup A <
59 oveq2 k = sup A < M k = M sup A <
60 59 sseq2d k = sup A < A M k A M sup A <
61 60 rspcev sup A < Z A M sup A < k Z A M k
62 31 58 61 syl2anc φ ¬ A = k Z A M k
63 19 62 pm2.61dan φ k Z A M k