Step |
Hyp |
Ref |
Expression |
1 |
|
uzfissfz.m |
|
2 |
|
uzfissfz.z |
|
3 |
|
uzfissfz.a |
|
4 |
|
uzfissfz.fi |
|
5 |
|
uzid |
|
6 |
1 5
|
syl |
|
7 |
2
|
a1i |
|
8 |
7
|
eqcomd |
|
9 |
6 8
|
eleqtrd |
|
10 |
9
|
adantr |
|
11 |
|
id |
|
12 |
|
0ss |
|
13 |
12
|
a1i |
|
14 |
11 13
|
eqsstrd |
|
15 |
14
|
adantl |
|
16 |
|
oveq2 |
|
17 |
16
|
sseq2d |
|
18 |
17
|
rspcev |
|
19 |
10 15 18
|
syl2anc |
|
20 |
3
|
adantr |
|
21 |
|
uzssz |
|
22 |
2 21
|
eqsstri |
|
23 |
22
|
a1i |
|
24 |
3 23
|
sstrd |
|
25 |
24
|
adantr |
|
26 |
11
|
necon3bi |
|
27 |
26
|
adantl |
|
28 |
4
|
adantr |
|
29 |
|
suprfinzcl |
|
30 |
25 27 28 29
|
syl3anc |
|
31 |
20 30
|
sseldd |
|
32 |
1
|
ad2antrr |
|
33 |
22 31
|
sselid |
|
34 |
33
|
adantr |
|
35 |
25
|
sselda |
|
36 |
3
|
sselda |
|
37 |
2
|
a1i |
|
38 |
36 37
|
eleqtrd |
|
39 |
|
eluzle |
|
40 |
38 39
|
syl |
|
41 |
40
|
adantlr |
|
42 |
|
zssre |
|
43 |
24 42
|
sstrdi |
|
44 |
43
|
ad2antrr |
|
45 |
27
|
adantr |
|
46 |
|
fimaxre2 |
|
47 |
43 4 46
|
syl2anc |
|
48 |
47
|
ad2antrr |
|
49 |
|
simpr |
|
50 |
|
suprub |
|
51 |
44 45 48 49 50
|
syl31anc |
|
52 |
32 34 35 41 51
|
elfzd |
|
53 |
52
|
ralrimiva |
|
54 |
|
dfss3 |
|
55 |
53 54
|
sylibr |
|
56 |
|
oveq2 |
|
57 |
56
|
sseq2d |
|
58 |
57
|
rspcev |
|
59 |
31 55 58
|
syl2anc |
|
60 |
19 59
|
pm2.61dan |
|