Metamath Proof Explorer


Theorem uzid3

Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis uzid3.1 Z = M
Assertion uzid3 N Z N N

Proof

Step Hyp Ref Expression
1 uzid3.1 Z = M
2 1 eleq2i N Z N M
3 2 biimpi N Z N M
4 uzid2 N M N N
5 3 4 syl N Z N N