Metamath Proof Explorer


Theorem uzidd2

Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzidd2.1 φ M
uzidd2.2 Z = M
Assertion uzidd2 φ M Z

Proof

Step Hyp Ref Expression
1 uzidd2.1 φ M
2 uzidd2.2 Z = M
3 1 uzidd φ M M
4 3 2 eleqtrrdi φ M Z