Metamath Proof Explorer


Theorem uzin

Description: Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013)

Ref Expression
Assertion uzin M N M N = if M N N M

Proof

Step Hyp Ref Expression
1 uztric M N N M M N
2 uzss N M N M
3 sseqin2 N M M N = N
4 2 3 sylib N M M N = N
5 eluzle N M M N
6 iftrue M N if M N N M = N
7 5 6 syl N M if M N N M = N
8 7 fveq2d N M if M N N M = N
9 4 8 eqtr4d N M M N = if M N N M
10 uzss M N M N
11 df-ss M N M N = M
12 10 11 sylib M N M N = M
13 eluzle M N N M
14 eluzel2 M N N
15 eluzelz M N M
16 zre N N
17 zre M M
18 letri3 N M N = M N M M N
19 16 17 18 syl2an N M N = M N M M N
20 14 15 19 syl2anc M N N = M N M M N
21 13 20 mpbirand M N N = M M N
22 21 biimprcd M N M N N = M
23 6 eqeq1d M N if M N N M = M N = M
24 22 23 sylibrd M N M N if M N N M = M
25 24 com12 M N M N if M N N M = M
26 iffalse ¬ M N if M N N M = M
27 25 26 pm2.61d1 M N if M N N M = M
28 27 fveq2d M N if M N N M = M
29 12 28 eqtr4d M N M N = if M N N M
30 9 29 jaoi N M M N M N = if M N N M
31 1 30 syl M N M N = if M N N M