Metamath Proof Explorer


Theorem uzin2

Description: The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013)

Ref Expression
Assertion uzin2 A ran B ran A B ran

Proof

Step Hyp Ref Expression
1 uzf : 𝒫
2 ffn : 𝒫 Fn
3 1 2 ax-mp Fn
4 fvelrnb Fn A ran x x = A
5 3 4 ax-mp A ran x x = A
6 fvelrnb Fn B ran y y = B
7 3 6 ax-mp B ran y y = B
8 ineq1 x = A x y = A y
9 8 eleq1d x = A x y ran A y ran
10 ineq2 y = B A y = A B
11 10 eleq1d y = B A y ran A B ran
12 uzin x y x y = if x y y x
13 ifcl y x if x y y x
14 13 ancoms x y if x y y x
15 fnfvelrn Fn if x y y x if x y y x ran
16 3 14 15 sylancr x y if x y y x ran
17 12 16 eqeltrd x y x y ran
18 5 7 9 11 17 2gencl A ran B ran A B ran