| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzind.1 |
|
| 2 |
|
uzind.2 |
|
| 3 |
|
uzind.3 |
|
| 4 |
|
uzind.4 |
|
| 5 |
|
uzind.5 |
|
| 6 |
|
uzind.6 |
|
| 7 |
|
zre |
|
| 8 |
7
|
leidd |
|
| 9 |
8 5
|
jca |
|
| 10 |
9
|
ancli |
|
| 11 |
|
breq2 |
|
| 12 |
11 1
|
anbi12d |
|
| 13 |
12
|
elrab |
|
| 14 |
10 13
|
sylibr |
|
| 15 |
|
peano2z |
|
| 16 |
15
|
a1i |
|
| 17 |
16
|
adantrd |
|
| 18 |
|
zre |
|
| 19 |
|
ltp1 |
|
| 20 |
19
|
adantl |
|
| 21 |
|
peano2re |
|
| 22 |
21
|
ancli |
|
| 23 |
|
lelttr |
|
| 24 |
23
|
3expb |
|
| 25 |
22 24
|
sylan2 |
|
| 26 |
20 25
|
mpan2d |
|
| 27 |
|
ltle |
|
| 28 |
21 27
|
sylan2 |
|
| 29 |
26 28
|
syld |
|
| 30 |
7 18 29
|
syl2an |
|
| 31 |
30
|
adantrd |
|
| 32 |
31
|
expimpd |
|
| 33 |
6
|
3exp |
|
| 34 |
33
|
imp4d |
|
| 35 |
32 34
|
jcad |
|
| 36 |
17 35
|
jcad |
|
| 37 |
|
breq2 |
|
| 38 |
37 2
|
anbi12d |
|
| 39 |
38
|
elrab |
|
| 40 |
|
breq2 |
|
| 41 |
40 3
|
anbi12d |
|
| 42 |
41
|
elrab |
|
| 43 |
36 39 42
|
3imtr4g |
|
| 44 |
43
|
ralrimiv |
|
| 45 |
|
peano5uzti |
|
| 46 |
14 44 45
|
mp2and |
|
| 47 |
46
|
sseld |
|
| 48 |
|
breq2 |
|
| 49 |
48
|
elrab |
|
| 50 |
|
breq2 |
|
| 51 |
50 4
|
anbi12d |
|
| 52 |
51
|
elrab |
|
| 53 |
47 49 52
|
3imtr3g |
|
| 54 |
53
|
3impib |
|
| 55 |
54
|
simprrd |
|