Metamath Proof Explorer


Theorem uzind4

Description: Induction on the upper set of integers that starts at an integer M . The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005)

Ref Expression
Hypotheses uzind4.1 j = M φ ψ
uzind4.2 j = k φ χ
uzind4.3 j = k + 1 φ θ
uzind4.4 j = N φ τ
uzind4.5 M ψ
uzind4.6 k M χ θ
Assertion uzind4 N M τ

Proof

Step Hyp Ref Expression
1 uzind4.1 j = M φ ψ
2 uzind4.2 j = k φ χ
3 uzind4.3 j = k + 1 φ θ
4 uzind4.4 j = N φ τ
5 uzind4.5 M ψ
6 uzind4.6 k M χ θ
7 eluzel2 N M M
8 breq2 m = N M m M N
9 eluzelz N M N
10 eluzle N M M N
11 8 9 10 elrabd N M N m | M m
12 breq2 m = k M m M k
13 12 elrab k m | M m k M k
14 eluz2 k M M k M k
15 14 biimpri M k M k k M
16 15 3expb M k M k k M
17 13 16 sylan2b M k m | M m k M
18 17 6 syl M k m | M m χ θ
19 1 2 3 4 5 18 uzind3 M N m | M m τ
20 7 11 19 syl2anc N M τ