Metamath Proof Explorer


Theorem uzind4ALT

Description: Induction on the upper set of integers that starts at an integer M . The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 or uzind4ALT may be used; see comment for nnind . (Contributed by NM, 7-Sep-2005) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses uzind4ALT.5 M ψ
uzind4ALT.6 k M χ θ
uzind4ALT.1 j = M φ ψ
uzind4ALT.2 j = k φ χ
uzind4ALT.3 j = k + 1 φ θ
uzind4ALT.4 j = N φ τ
Assertion uzind4ALT N M τ

Proof

Step Hyp Ref Expression
1 uzind4ALT.5 M ψ
2 uzind4ALT.6 k M χ θ
3 uzind4ALT.1 j = M φ ψ
4 uzind4ALT.2 j = k φ χ
5 uzind4ALT.3 j = k + 1 φ θ
6 uzind4ALT.4 j = N φ τ
7 3 4 5 6 1 2 uzind4 N M τ