Metamath Proof Explorer


Theorem uzind4s

Description: Induction on the upper set of integers that starts at an integer M , using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005)

Ref Expression
Hypotheses uzind4s.1 M [˙M / k]˙ φ
uzind4s.2 k M φ [˙k + 1 / k]˙ φ
Assertion uzind4s N M [˙N / k]˙ φ

Proof

Step Hyp Ref Expression
1 uzind4s.1 M [˙M / k]˙ φ
2 uzind4s.2 k M φ [˙k + 1 / k]˙ φ
3 dfsbcq2 j = M j k φ [˙M / k]˙ φ
4 sbequ j = m j k φ m k φ
5 dfsbcq2 j = m + 1 j k φ [˙m + 1 / k]˙ φ
6 dfsbcq2 j = N j k φ [˙N / k]˙ φ
7 nfv k m M
8 nfs1v k m k φ
9 nfsbc1v k [˙m + 1 / k]˙ φ
10 8 9 nfim k m k φ [˙m + 1 / k]˙ φ
11 7 10 nfim k m M m k φ [˙m + 1 / k]˙ φ
12 eleq1w k = m k M m M
13 sbequ12 k = m φ m k φ
14 oveq1 k = m k + 1 = m + 1
15 14 sbceq1d k = m [˙k + 1 / k]˙ φ [˙m + 1 / k]˙ φ
16 13 15 imbi12d k = m φ [˙k + 1 / k]˙ φ m k φ [˙m + 1 / k]˙ φ
17 12 16 imbi12d k = m k M φ [˙k + 1 / k]˙ φ m M m k φ [˙m + 1 / k]˙ φ
18 11 17 2 chvarfv m M m k φ [˙m + 1 / k]˙ φ
19 3 4 5 6 1 18 uzind4 N M [˙N / k]˙ φ