Metamath Proof Explorer


Theorem uzind4s2

Description: Induction on the upper set of integers that starts at an integer M , using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s when j and k must be distinct in [. ( k + 1 ) / j ]. ph . (Contributed by NM, 16-Nov-2005)

Ref Expression
Hypotheses uzind4s2.1 M [˙M / j]˙ φ
uzind4s2.2 k M [˙k / j]˙ φ [˙k + 1 / j]˙ φ
Assertion uzind4s2 N M [˙N / j]˙ φ

Proof

Step Hyp Ref Expression
1 uzind4s2.1 M [˙M / j]˙ φ
2 uzind4s2.2 k M [˙k / j]˙ φ [˙k + 1 / j]˙ φ
3 dfsbcq m = M [˙m / j]˙ φ [˙M / j]˙ φ
4 dfsbcq m = n [˙m / j]˙ φ [˙n / j]˙ φ
5 dfsbcq m = n + 1 [˙m / j]˙ φ [˙n + 1 / j]˙ φ
6 dfsbcq m = N [˙m / j]˙ φ [˙N / j]˙ φ
7 dfsbcq k = n [˙k / j]˙ φ [˙n / j]˙ φ
8 oveq1 k = n k + 1 = n + 1
9 8 sbceq1d k = n [˙k + 1 / j]˙ φ [˙n + 1 / j]˙ φ
10 7 9 imbi12d k = n [˙k / j]˙ φ [˙k + 1 / j]˙ φ [˙n / j]˙ φ [˙n + 1 / j]˙ φ
11 10 2 vtoclga n M [˙n / j]˙ φ [˙n + 1 / j]˙ φ
12 3 4 5 6 1 11 uzind4 N M [˙N / j]˙ φ