Metamath Proof Explorer


Theorem uzinf

Description: An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypothesis uzinf.1 Z = M
Assertion uzinf M ¬ Z Fin

Proof

Step Hyp Ref Expression
1 uzinf.1 Z = M
2 ominf ¬ ω Fin
3 1 uzenom M Z ω
4 enfi Z ω Z Fin ω Fin
5 3 4 syl M Z Fin ω Fin
6 2 5 mtbiri M ¬ Z Fin