Metamath Proof Explorer


Theorem uzinfi

Description: Extract the lower bound of an upper set of integers as its infimum. (Contributed by NM, 7-Oct-2005) (Revised by AV, 4-Sep-2020)

Ref Expression
Hypothesis uzinfi.1 M
Assertion uzinfi sup M < = M

Proof

Step Hyp Ref Expression
1 uzinfi.1 M
2 ltso < Or
3 2 a1i M < Or
4 zre M M
5 uzid M M M
6 eluz2 k M M k M k
7 4 adantr M k M
8 zre k k
9 8 adantl M k k
10 7 9 lenltd M k M k ¬ k < M
11 10 biimp3a M k M k ¬ k < M
12 11 a1d M k M k M ¬ k < M
13 6 12 sylbi k M M ¬ k < M
14 13 impcom M k M ¬ k < M
15 3 4 5 14 infmin M sup M < = M
16 1 15 ax-mp sup M < = M