Metamath Proof Explorer


Theorem uzm1

Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion uzm1 N M N = M N 1 M

Proof

Step Hyp Ref Expression
1 eluzel2 N M M
2 1 a1d N M ¬ N = M M
3 eluzelz N M N
4 peano2zm N N 1
5 3 4 syl N M N 1
6 5 a1d N M ¬ N = M N 1
7 df-ne N M ¬ N = M
8 eluzle N M M N
9 1 zred N M M
10 eluzelre N M N
11 9 10 ltlend N M M < N M N N M
12 11 biimprd N M M N N M M < N
13 8 12 mpand N M N M M < N
14 7 13 syl5bir N M ¬ N = M M < N
15 zltlem1 M N M < N M N 1
16 1 3 15 syl2anc N M M < N M N 1
17 14 16 sylibd N M ¬ N = M M N 1
18 2 6 17 3jcad N M ¬ N = M M N 1 M N 1
19 eluz2 N 1 M M N 1 M N 1
20 18 19 syl6ibr N M ¬ N = M N 1 M
21 20 orrd N M N = M N 1 M