Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
uzn0
Next ⟩
uztrn
Metamath Proof Explorer
Ascii
Unicode
Theorem
uzn0
Description:
The upper integers are all nonempty.
(Contributed by
Mario Carneiro
, 16-Jan-2014)
Ref
Expression
Assertion
uzn0
⊢
M
∈
ran
⁡
ℤ
≥
→
M
≠
∅
Proof
Step
Hyp
Ref
Expression
1
uzf
⊢
ℤ
≥
:
ℤ
⟶
𝒫
ℤ
2
ffn
⊢
ℤ
≥
:
ℤ
⟶
𝒫
ℤ
→
ℤ
≥
Fn
ℤ
3
fvelrnb
⊢
ℤ
≥
Fn
ℤ
→
M
∈
ran
⁡
ℤ
≥
↔
∃
k
∈
ℤ
ℤ
≥
k
=
M
4
1
2
3
mp2b
⊢
M
∈
ran
⁡
ℤ
≥
↔
∃
k
∈
ℤ
ℤ
≥
k
=
M
5
uzid
⊢
k
∈
ℤ
→
k
∈
ℤ
≥
k
6
5
ne0d
⊢
k
∈
ℤ
→
ℤ
≥
k
≠
∅
7
neeq1
⊢
ℤ
≥
k
=
M
→
ℤ
≥
k
≠
∅
↔
M
≠
∅
8
6
7
syl5ibcom
⊢
k
∈
ℤ
→
ℤ
≥
k
=
M
→
M
≠
∅
9
8
rexlimiv
⊢
∃
k
∈
ℤ
ℤ
≥
k
=
M
→
M
≠
∅
10
4
9
sylbi
⊢
M
∈
ran
⁡
ℤ
≥
→
M
≠
∅