Metamath Proof Explorer


Theorem uzn0bi

Description: The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion uzn0bi M M

Proof

Step Hyp Ref Expression
1 uz0 ¬ M M =
2 1 adantl M ¬ M M =
3 neneq M ¬ M =
4 3 adantr M ¬ M ¬ M =
5 2 4 condan M M
6 id M M
7 eqid M = M
8 6 7 uzn0d M M
9 5 8 impbii M M