Metamath Proof Explorer


Theorem uzn0d

Description: The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzn0d.1 φ M
uzn0d.2 Z = M
Assertion uzn0d φ Z

Proof

Step Hyp Ref Expression
1 uzn0d.1 φ M
2 uzn0d.2 Z = M
3 1 2 uzidd2 φ M Z
4 3 ne0d φ Z