Metamath Proof Explorer


Theorem uzneg

Description: Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005)

Ref Expression
Assertion uzneg N M M -N

Proof

Step Hyp Ref Expression
1 eluzle N M M N
2 eluzel2 N M M
3 eluzelz N M N
4 zre M M
5 zre N N
6 leneg M N M N N M
7 4 5 6 syl2an M N M N N M
8 2 3 7 syl2anc N M M N N M
9 1 8 mpbid N M N M
10 znegcl N N
11 znegcl M M
12 eluz N M M -N N M
13 10 11 12 syl2an N M M -N N M
14 3 2 13 syl2anc N M M -N N M
15 9 14 mpbird N M M -N