Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
uzneg
Next ⟩
uzssz
Metamath Proof Explorer
Ascii
Unicode
Theorem
uzneg
Description:
Contraposition law for upper integers.
(Contributed by
NM
, 28-Nov-2005)
Ref
Expression
Assertion
uzneg
⊢
N
∈
ℤ
≥
M
→
−
M
∈
ℤ
≥
-
N
Proof
Step
Hyp
Ref
Expression
1
eluzle
⊢
N
∈
ℤ
≥
M
→
M
≤
N
2
eluzel2
⊢
N
∈
ℤ
≥
M
→
M
∈
ℤ
3
eluzelz
⊢
N
∈
ℤ
≥
M
→
N
∈
ℤ
4
zre
⊢
M
∈
ℤ
→
M
∈
ℝ
5
zre
⊢
N
∈
ℤ
→
N
∈
ℝ
6
leneg
⊢
M
∈
ℝ
∧
N
∈
ℝ
→
M
≤
N
↔
−
N
≤
−
M
7
4
5
6
syl2an
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
≤
N
↔
−
N
≤
−
M
8
2
3
7
syl2anc
⊢
N
∈
ℤ
≥
M
→
M
≤
N
↔
−
N
≤
−
M
9
1
8
mpbid
⊢
N
∈
ℤ
≥
M
→
−
N
≤
−
M
10
znegcl
⊢
N
∈
ℤ
→
−
N
∈
ℤ
11
znegcl
⊢
M
∈
ℤ
→
−
M
∈
ℤ
12
eluz
⊢
−
N
∈
ℤ
∧
−
M
∈
ℤ
→
−
M
∈
ℤ
≥
-
N
↔
−
N
≤
−
M
13
10
11
12
syl2an
⊢
N
∈
ℤ
∧
M
∈
ℤ
→
−
M
∈
ℤ
≥
-
N
↔
−
N
≤
−
M
14
3
2
13
syl2anc
⊢
N
∈
ℤ
≥
M
→
−
M
∈
ℤ
≥
-
N
↔
−
N
≤
−
M
15
9
14
mpbird
⊢
N
∈
ℤ
≥
M
→
−
M
∈
ℤ
≥
-
N