Metamath Proof Explorer


Theorem uzp1

Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion uzp1 N M N = M N M + 1

Proof

Step Hyp Ref Expression
1 uzm1 N M N = M N 1 M
2 eluzp1p1 N 1 M N - 1 + 1 M + 1
3 eluzelcn N M N
4 ax-1cn 1
5 npcan N 1 N - 1 + 1 = N
6 3 4 5 sylancl N M N - 1 + 1 = N
7 6 eleq1d N M N - 1 + 1 M + 1 N M + 1
8 2 7 syl5ib N M N 1 M N M + 1
9 8 orim2d N M N = M N 1 M N = M N M + 1
10 1 9 mpd N M N = M N M + 1