Metamath Proof Explorer


Theorem uzrdg0i

Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G = rec x V x + 1 C ω
uzrdg.1 A V
uzrdg.2 R = rec x V , y V x + 1 x F y C A ω
uzrdg.3 S = ran R
Assertion uzrdg0i S C = A

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G = rec x V x + 1 C ω
3 uzrdg.1 A V
4 uzrdg.2 R = rec x V , y V x + 1 x F y C A ω
5 uzrdg.3 S = ran R
6 1 2 3 4 5 uzrdgfni S Fn C
7 fnfun S Fn C Fun S
8 6 7 ax-mp Fun S
9 4 fveq1i R = rec x V , y V x + 1 x F y C A ω
10 opex C A V
11 fr0g C A V rec x V , y V x + 1 x F y C A ω = C A
12 10 11 ax-mp rec x V , y V x + 1 x F y C A ω = C A
13 9 12 eqtri R = C A
14 frfnom rec x V , y V x + 1 x F y C A ω Fn ω
15 4 fneq1i R Fn ω rec x V , y V x + 1 x F y C A ω Fn ω
16 14 15 mpbir R Fn ω
17 peano1 ω
18 fnfvelrn R Fn ω ω R ran R
19 16 17 18 mp2an R ran R
20 13 19 eqeltrri C A ran R
21 20 5 eleqtrri C A S
22 funopfv Fun S C A S S C = A
23 8 21 22 mp2 S C = A