Metamath Proof Explorer


Theorem uzrdglem

Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G = rec x V x + 1 C ω
uzrdg.1 A V
uzrdg.2 R = rec x V , y V x + 1 x F y C A ω
Assertion uzrdglem B C B 2 nd R G -1 B ran R

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G = rec x V x + 1 C ω
3 uzrdg.1 A V
4 uzrdg.2 R = rec x V , y V x + 1 x F y C A ω
5 1 2 om2uzf1oi G : ω 1-1 onto C
6 f1ocnvdm G : ω 1-1 onto C B C G -1 B ω
7 5 6 mpan B C G -1 B ω
8 1 2 3 4 om2uzrdg G -1 B ω R G -1 B = G G -1 B 2 nd R G -1 B
9 7 8 syl B C R G -1 B = G G -1 B 2 nd R G -1 B
10 f1ocnvfv2 G : ω 1-1 onto C B C G G -1 B = B
11 5 10 mpan B C G G -1 B = B
12 11 opeq1d B C G G -1 B 2 nd R G -1 B = B 2 nd R G -1 B
13 9 12 eqtrd B C R G -1 B = B 2 nd R G -1 B
14 frfnom rec x V , y V x + 1 x F y C A ω Fn ω
15 4 fneq1i R Fn ω rec x V , y V x + 1 x F y C A ω Fn ω
16 14 15 mpbir R Fn ω
17 fnfvelrn R Fn ω G -1 B ω R G -1 B ran R
18 16 7 17 sylancr B C R G -1 B ran R
19 13 18 eqeltrrd B C B 2 nd R G -1 B ran R