Metamath Proof Explorer


Theorem uzrdgsuci

Description: Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G = rec x V x + 1 C ω
uzrdg.1 A V
uzrdg.2 R = rec x V , y V x + 1 x F y C A ω
uzrdg.3 S = ran R
Assertion uzrdgsuci B C S B + 1 = B F S B

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G = rec x V x + 1 C ω
3 uzrdg.1 A V
4 uzrdg.2 R = rec x V , y V x + 1 x F y C A ω
5 uzrdg.3 S = ran R
6 1 2 3 4 5 uzrdgfni S Fn C
7 fnfun S Fn C Fun S
8 6 7 ax-mp Fun S
9 peano2uz B C B + 1 C
10 1 2 3 4 uzrdglem B + 1 C B + 1 2 nd R G -1 B + 1 ran R
11 9 10 syl B C B + 1 2 nd R G -1 B + 1 ran R
12 11 5 eleqtrrdi B C B + 1 2 nd R G -1 B + 1 S
13 funopfv Fun S B + 1 2 nd R G -1 B + 1 S S B + 1 = 2 nd R G -1 B + 1
14 8 12 13 mpsyl B C S B + 1 = 2 nd R G -1 B + 1
15 1 2 om2uzf1oi G : ω 1-1 onto C
16 f1ocnvdm G : ω 1-1 onto C B C G -1 B ω
17 15 16 mpan B C G -1 B ω
18 peano2 G -1 B ω suc G -1 B ω
19 17 18 syl B C suc G -1 B ω
20 1 2 om2uzsuci G -1 B ω G suc G -1 B = G G -1 B + 1
21 17 20 syl B C G suc G -1 B = G G -1 B + 1
22 f1ocnvfv2 G : ω 1-1 onto C B C G G -1 B = B
23 15 22 mpan B C G G -1 B = B
24 23 oveq1d B C G G -1 B + 1 = B + 1
25 21 24 eqtrd B C G suc G -1 B = B + 1
26 f1ocnvfv G : ω 1-1 onto C suc G -1 B ω G suc G -1 B = B + 1 G -1 B + 1 = suc G -1 B
27 15 26 mpan suc G -1 B ω G suc G -1 B = B + 1 G -1 B + 1 = suc G -1 B
28 19 25 27 sylc B C G -1 B + 1 = suc G -1 B
29 28 fveq2d B C R G -1 B + 1 = R suc G -1 B
30 29 fveq2d B C 2 nd R G -1 B + 1 = 2 nd R suc G -1 B
31 14 30 eqtrd B C S B + 1 = 2 nd R suc G -1 B
32 frsuc G -1 B ω rec x V , y V x + 1 x F y C A ω suc G -1 B = x V , y V x + 1 x F y rec x V , y V x + 1 x F y C A ω G -1 B
33 4 fveq1i R suc G -1 B = rec x V , y V x + 1 x F y C A ω suc G -1 B
34 4 fveq1i R G -1 B = rec x V , y V x + 1 x F y C A ω G -1 B
35 34 fveq2i x V , y V x + 1 x F y R G -1 B = x V , y V x + 1 x F y rec x V , y V x + 1 x F y C A ω G -1 B
36 32 33 35 3eqtr4g G -1 B ω R suc G -1 B = x V , y V x + 1 x F y R G -1 B
37 1 2 3 4 om2uzrdg G -1 B ω R G -1 B = G G -1 B 2 nd R G -1 B
38 37 fveq2d G -1 B ω x V , y V x + 1 x F y R G -1 B = x V , y V x + 1 x F y G G -1 B 2 nd R G -1 B
39 df-ov G G -1 B x V , y V x + 1 x F y 2 nd R G -1 B = x V , y V x + 1 x F y G G -1 B 2 nd R G -1 B
40 38 39 eqtr4di G -1 B ω x V , y V x + 1 x F y R G -1 B = G G -1 B x V , y V x + 1 x F y 2 nd R G -1 B
41 36 40 eqtrd G -1 B ω R suc G -1 B = G G -1 B x V , y V x + 1 x F y 2 nd R G -1 B
42 fvex G G -1 B V
43 fvex 2 nd R G -1 B V
44 oveq1 z = G G -1 B z + 1 = G G -1 B + 1
45 oveq1 z = G G -1 B z F w = G G -1 B F w
46 44 45 opeq12d z = G G -1 B z + 1 z F w = G G -1 B + 1 G G -1 B F w
47 oveq2 w = 2 nd R G -1 B G G -1 B F w = G G -1 B F 2 nd R G -1 B
48 47 opeq2d w = 2 nd R G -1 B G G -1 B + 1 G G -1 B F w = G G -1 B + 1 G G -1 B F 2 nd R G -1 B
49 oveq1 x = z x + 1 = z + 1
50 oveq1 x = z x F y = z F y
51 49 50 opeq12d x = z x + 1 x F y = z + 1 z F y
52 oveq2 y = w z F y = z F w
53 52 opeq2d y = w z + 1 z F y = z + 1 z F w
54 51 53 cbvmpov x V , y V x + 1 x F y = z V , w V z + 1 z F w
55 opex G G -1 B + 1 G G -1 B F 2 nd R G -1 B V
56 46 48 54 55 ovmpo G G -1 B V 2 nd R G -1 B V G G -1 B x V , y V x + 1 x F y 2 nd R G -1 B = G G -1 B + 1 G G -1 B F 2 nd R G -1 B
57 42 43 56 mp2an G G -1 B x V , y V x + 1 x F y 2 nd R G -1 B = G G -1 B + 1 G G -1 B F 2 nd R G -1 B
58 41 57 eqtrdi G -1 B ω R suc G -1 B = G G -1 B + 1 G G -1 B F 2 nd R G -1 B
59 58 fveq2d G -1 B ω 2 nd R suc G -1 B = 2 nd G G -1 B + 1 G G -1 B F 2 nd R G -1 B
60 ovex G G -1 B + 1 V
61 ovex G G -1 B F 2 nd R G -1 B V
62 60 61 op2nd 2 nd G G -1 B + 1 G G -1 B F 2 nd R G -1 B = G G -1 B F 2 nd R G -1 B
63 59 62 eqtrdi G -1 B ω 2 nd R suc G -1 B = G G -1 B F 2 nd R G -1 B
64 17 63 syl B C 2 nd R suc G -1 B = G G -1 B F 2 nd R G -1 B
65 1 2 3 4 uzrdglem B C B 2 nd R G -1 B ran R
66 65 5 eleqtrrdi B C B 2 nd R G -1 B S
67 funopfv Fun S B 2 nd R G -1 B S S B = 2 nd R G -1 B
68 8 66 67 mpsyl B C S B = 2 nd R G -1 B
69 68 eqcomd B C 2 nd R G -1 B = S B
70 23 69 oveq12d B C G G -1 B F 2 nd R G -1 B = B F S B
71 31 64 70 3eqtrd B C S B + 1 = B F S B