Metamath Proof Explorer


Theorem uzrdgxfr

Description: Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014)

Ref Expression
Hypotheses uzrdgxfr.1 G=recxVx+1Aω
uzrdgxfr.2 H=recxVx+1Bω
uzrdgxfr.3 A
uzrdgxfr.4 B
Assertion uzrdgxfr NωGN=HN+A-B

Proof

Step Hyp Ref Expression
1 uzrdgxfr.1 G=recxVx+1Aω
2 uzrdgxfr.2 H=recxVx+1Bω
3 uzrdgxfr.3 A
4 uzrdgxfr.4 B
5 fveq2 y=Gy=G
6 fveq2 y=Hy=H
7 6 oveq1d y=Hy+A-B=H+A-B
8 5 7 eqeq12d y=Gy=Hy+A-BG=H+A-B
9 fveq2 y=kGy=Gk
10 fveq2 y=kHy=Hk
11 10 oveq1d y=kHy+A-B=Hk+A-B
12 9 11 eqeq12d y=kGy=Hy+A-BGk=Hk+A-B
13 fveq2 y=suckGy=Gsuck
14 fveq2 y=suckHy=Hsuck
15 14 oveq1d y=suckHy+A-B=Hsuck+A-B
16 13 15 eqeq12d y=suckGy=Hy+A-BGsuck=Hsuck+A-B
17 fveq2 y=NGy=GN
18 fveq2 y=NHy=HN
19 18 oveq1d y=NHy+A-B=HN+A-B
20 17 19 eqeq12d y=NGy=Hy+A-BGN=HN+A-B
21 zcn BB
22 4 21 ax-mp B
23 zcn AA
24 3 23 ax-mp A
25 22 24 pncan3i B+A-B=A
26 4 2 om2uz0i H=B
27 26 oveq1i H+A-B=B+A-B
28 3 1 om2uz0i G=A
29 25 27 28 3eqtr4ri G=H+A-B
30 oveq1 Gk=Hk+A-BGk+1=Hk+AB+1
31 3 1 om2uzsuci kωGsuck=Gk+1
32 4 2 om2uzsuci kωHsuck=Hk+1
33 32 oveq1d kωHsuck+A-B=Hk+1+AB
34 4 2 om2uzuzi kωHkB
35 eluzelz HkBHk
36 34 35 syl kωHk
37 36 zcnd kωHk
38 ax-1cn 1
39 24 22 subcli AB
40 add32 Hk1ABHk+1+AB=Hk+AB+1
41 38 39 40 mp3an23 HkHk+1+AB=Hk+AB+1
42 37 41 syl kωHk+1+AB=Hk+AB+1
43 33 42 eqtrd kωHsuck+A-B=Hk+AB+1
44 31 43 eqeq12d kωGsuck=Hsuck+A-BGk+1=Hk+AB+1
45 30 44 imbitrrid kωGk=Hk+A-BGsuck=Hsuck+A-B
46 8 12 16 20 29 45 finds NωGN=HN+A-B