Metamath Proof Explorer


Theorem uzrdgxfr

Description: Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014)

Ref Expression
Hypotheses uzrdgxfr.1 G = rec x V x + 1 A ω
uzrdgxfr.2 H = rec x V x + 1 B ω
uzrdgxfr.3 A
uzrdgxfr.4 B
Assertion uzrdgxfr N ω G N = H N + A - B

Proof

Step Hyp Ref Expression
1 uzrdgxfr.1 G = rec x V x + 1 A ω
2 uzrdgxfr.2 H = rec x V x + 1 B ω
3 uzrdgxfr.3 A
4 uzrdgxfr.4 B
5 fveq2 y = G y = G
6 fveq2 y = H y = H
7 6 oveq1d y = H y + A - B = H + A - B
8 5 7 eqeq12d y = G y = H y + A - B G = H + A - B
9 fveq2 y = k G y = G k
10 fveq2 y = k H y = H k
11 10 oveq1d y = k H y + A - B = H k + A - B
12 9 11 eqeq12d y = k G y = H y + A - B G k = H k + A - B
13 fveq2 y = suc k G y = G suc k
14 fveq2 y = suc k H y = H suc k
15 14 oveq1d y = suc k H y + A - B = H suc k + A - B
16 13 15 eqeq12d y = suc k G y = H y + A - B G suc k = H suc k + A - B
17 fveq2 y = N G y = G N
18 fveq2 y = N H y = H N
19 18 oveq1d y = N H y + A - B = H N + A - B
20 17 19 eqeq12d y = N G y = H y + A - B G N = H N + A - B
21 zcn B B
22 4 21 ax-mp B
23 zcn A A
24 3 23 ax-mp A
25 22 24 pncan3i B + A - B = A
26 4 2 om2uz0i H = B
27 26 oveq1i H + A - B = B + A - B
28 3 1 om2uz0i G = A
29 25 27 28 3eqtr4ri G = H + A - B
30 oveq1 G k = H k + A - B G k + 1 = H k + A B + 1
31 3 1 om2uzsuci k ω G suc k = G k + 1
32 4 2 om2uzsuci k ω H suc k = H k + 1
33 32 oveq1d k ω H suc k + A - B = H k + 1 + A B
34 4 2 om2uzuzi k ω H k B
35 eluzelz H k B H k
36 34 35 syl k ω H k
37 36 zcnd k ω H k
38 ax-1cn 1
39 24 22 subcli A B
40 add32 H k 1 A B H k + 1 + A B = H k + A B + 1
41 38 39 40 mp3an23 H k H k + 1 + A B = H k + A B + 1
42 37 41 syl k ω H k + 1 + A B = H k + A B + 1
43 33 42 eqtrd k ω H suc k + A - B = H k + A B + 1
44 31 43 eqeq12d k ω G suc k = H suc k + A - B G k + 1 = H k + A B + 1
45 30 44 syl5ibr k ω G k = H k + A - B G suc k = H suc k + A - B
46 8 12 16 20 29 45 finds N ω G N = H N + A - B