Metamath Proof Explorer


Theorem uzred

Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzred.1 Z = M
uzred.2 φ A Z
Assertion uzred φ A

Proof

Step Hyp Ref Expression
1 uzred.1 Z = M
2 uzred.2 φ A Z
3 zssre
4 1 2 eluzelz2d φ A
5 3 4 sselid φ A