Metamath Proof Explorer


Theorem uzsinds

Description: Strong (or "total") induction principle over an upper set of integers. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Hypotheses uzsinds.1 x = y φ ψ
uzsinds.2 x = N φ χ
uzsinds.3 x M y M x 1 ψ φ
Assertion uzsinds N M χ

Proof

Step Hyp Ref Expression
1 uzsinds.1 x = y φ ψ
2 uzsinds.2 x = N φ χ
3 uzsinds.3 x M y M x 1 ψ φ
4 ltweuz < We M
5 fvex M V
6 exse M V < Se M
7 5 6 ax-mp < Se M
8 preduz x M Pred < M x = M x 1
9 8 raleqdv x M y Pred < M x ψ y M x 1 ψ
10 9 3 sylbid x M y Pred < M x ψ φ
11 4 7 1 2 10 wfis3 N M χ