Metamath Proof Explorer


Theorem uzsscn2

Description: An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypothesis uzsscn2.1 Z = M
Assertion uzsscn2 Z

Proof

Step Hyp Ref Expression
1 uzsscn2.1 Z = M
2 uzsscn M
3 1 2 eqsstri Z