Metamath Proof Explorer


Theorem uzssico

Description: Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021)

Ref Expression
Assertion uzssico M M M +∞

Proof

Step Hyp Ref Expression
1 zssre
2 1 sseli x x
3 2 a1i M x x
4 3 anim1d M x M x x M x
5 eluz1 M x M x M x
6 zre M M
7 elicopnf M x M +∞ x M x
8 6 7 syl M x M +∞ x M x
9 4 5 8 3imtr4d M x M x M +∞
10 9 ssrdv M M M +∞