Metamath Proof Explorer


Theorem uzsubfz0

Description: Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018)

Ref Expression
Assertion uzsubfz0 L 0 N L N L 0 N

Proof

Step Hyp Ref Expression
1 simpl L 0 N L L 0
2 eluznn0 L 0 N L N 0
3 eluzle N L L N
4 3 adantl L 0 N L L N
5 elfz2nn0 L 0 N L 0 N 0 L N
6 1 2 4 5 syl3anbrc L 0 N L L 0 N
7 fznn0sub2 L 0 N N L 0 N
8 6 7 syl L 0 N L N L 0 N