Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2 |
|
2 |
|
eluz2 |
|
3 |
|
simpr |
|
4 |
|
simpr |
|
5 |
4
|
adantr |
|
6 |
|
zsubcl |
|
7 |
6
|
adantlr |
|
8 |
5 7
|
zsubcld |
|
9 |
3 5 8
|
3jca |
|
10 |
9
|
ex |
|
11 |
10
|
3adant3 |
|
12 |
11
|
com12 |
|
13 |
12
|
adantr |
|
14 |
13
|
imp |
|
15 |
|
zre |
|
16 |
15
|
adantl |
|
17 |
16
|
adantr |
|
18 |
|
zre |
|
19 |
18
|
adantr |
|
20 |
19
|
adantr |
|
21 |
17 20
|
subge0d |
|
22 |
21
|
exbiri |
|
23 |
22
|
com23 |
|
24 |
23
|
3impia |
|
25 |
24
|
impcom |
|
26 |
|
zre |
|
27 |
26
|
adantr |
|
28 |
27
|
adantr |
|
29 |
|
resubcl |
|
30 |
15 18 29
|
syl2anr |
|
31 |
30
|
3adant3 |
|
32 |
31
|
adantl |
|
33 |
28 32
|
addge02d |
|
34 |
25 33
|
mpbid |
|
35 |
|
zcn |
|
36 |
35
|
3ad2ant2 |
|
37 |
36
|
adantl |
|
38 |
|
zcn |
|
39 |
38
|
3ad2ant1 |
|
40 |
39
|
adantl |
|
41 |
|
zcn |
|
42 |
41
|
adantr |
|
43 |
42
|
adantr |
|
44 |
37 40 43
|
subsubd |
|
45 |
34 44
|
breqtrrd |
|
46 |
18
|
3ad2ant1 |
|
47 |
|
subge0 |
|
48 |
46 26 47
|
syl2anr |
|
49 |
48
|
exbiri |
|
50 |
49
|
com23 |
|
51 |
50
|
imp31 |
|
52 |
15
|
3ad2ant2 |
|
53 |
52
|
adantl |
|
54 |
|
resubcl |
|
55 |
46 27 54
|
syl2anr |
|
56 |
53 55
|
subge02d |
|
57 |
51 56
|
mpbid |
|
58 |
45 57
|
jca |
|
59 |
|
elfz2 |
|
60 |
14 58 59
|
sylanbrc |
|
61 |
60
|
ex |
|
62 |
61
|
3adant2 |
|
63 |
2 62
|
syl5bi |
|
64 |
1 63
|
sylbi |
|
65 |
64
|
imp |
|