Metamath Proof Explorer


Theorem uzsup

Description: An upper set of integers is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis uzsup.1 Z = M
Assertion uzsup M sup Z * < = +∞

Proof

Step Hyp Ref Expression
1 uzsup.1 Z = M
2 simpl M x M
3 flcl x x
4 3 peano2zd x x + 1
5 id M M
6 ifcl x + 1 M if M x + 1 x + 1 M
7 4 5 6 syl2anr M x if M x + 1 x + 1 M
8 zre M M
9 reflcl x x
10 peano2re x x + 1
11 9 10 syl x x + 1
12 max1 M x + 1 M if M x + 1 x + 1 M
13 8 11 12 syl2an M x M if M x + 1 x + 1 M
14 eluz2 if M x + 1 x + 1 M M M if M x + 1 x + 1 M M if M x + 1 x + 1 M
15 2 7 13 14 syl3anbrc M x if M x + 1 x + 1 M M
16 15 1 eleqtrrdi M x if M x + 1 x + 1 M Z
17 simpr M x x
18 11 adantl M x x + 1
19 7 zred M x if M x + 1 x + 1 M
20 fllep1 x x x + 1
21 20 adantl M x x x + 1
22 max2 M x + 1 x + 1 if M x + 1 x + 1 M
23 8 11 22 syl2an M x x + 1 if M x + 1 x + 1 M
24 17 18 19 21 23 letrd M x x if M x + 1 x + 1 M
25 breq2 n = if M x + 1 x + 1 M x n x if M x + 1 x + 1 M
26 25 rspcev if M x + 1 x + 1 M Z x if M x + 1 x + 1 M n Z x n
27 16 24 26 syl2anc M x n Z x n
28 27 ralrimiva M x n Z x n
29 uzssz M
30 1 29 eqsstri Z
31 zssre
32 30 31 sstri Z
33 ressxr *
34 32 33 sstri Z *
35 supxrunb1 Z * x n Z x n sup Z * < = +∞
36 34 35 ax-mp x n Z x n sup Z * < = +∞
37 28 36 sylib M sup Z * < = +∞