Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
uztrn
Next ⟩
uztrn2
Metamath Proof Explorer
Ascii
Unicode
Theorem
uztrn
Description:
Transitive law for sets of upper integers.
(Contributed by
NM
, 20-Sep-2005)
Ref
Expression
Assertion
uztrn
⊢
M
∈
ℤ
≥
K
∧
K
∈
ℤ
≥
N
→
M
∈
ℤ
≥
N
Proof
Step
Hyp
Ref
Expression
1
eluzel2
⊢
K
∈
ℤ
≥
N
→
N
∈
ℤ
2
1
adantl
⊢
M
∈
ℤ
≥
K
∧
K
∈
ℤ
≥
N
→
N
∈
ℤ
3
eluzelz
⊢
M
∈
ℤ
≥
K
→
M
∈
ℤ
4
3
adantr
⊢
M
∈
ℤ
≥
K
∧
K
∈
ℤ
≥
N
→
M
∈
ℤ
5
eluzle
⊢
K
∈
ℤ
≥
N
→
N
≤
K
6
5
adantl
⊢
M
∈
ℤ
≥
K
∧
K
∈
ℤ
≥
N
→
N
≤
K
7
eluzle
⊢
M
∈
ℤ
≥
K
→
K
≤
M
8
7
adantr
⊢
M
∈
ℤ
≥
K
∧
K
∈
ℤ
≥
N
→
K
≤
M
9
eluzelz
⊢
K
∈
ℤ
≥
N
→
K
∈
ℤ
10
zletr
⊢
N
∈
ℤ
∧
K
∈
ℤ
∧
M
∈
ℤ
→
N
≤
K
∧
K
≤
M
→
N
≤
M
11
1
9
4
10
syl2an23an
⊢
M
∈
ℤ
≥
K
∧
K
∈
ℤ
≥
N
→
N
≤
K
∧
K
≤
M
→
N
≤
M
12
6
8
11
mp2and
⊢
M
∈
ℤ
≥
K
∧
K
∈
ℤ
≥
N
→
N
≤
M
13
eluz2
⊢
M
∈
ℤ
≥
N
↔
N
∈
ℤ
∧
M
∈
ℤ
∧
N
≤
M
14
2
4
12
13
syl3anbrc
⊢
M
∈
ℤ
≥
K
∧
K
∈
ℤ
≥
N
→
M
∈
ℤ
≥
N