Metamath Proof Explorer


Theorem uztrn

Description: Transitive law for sets of upper integers. (Contributed by NM, 20-Sep-2005)

Ref Expression
Assertion uztrn M K K N M N

Proof

Step Hyp Ref Expression
1 eluzel2 K N N
2 1 adantl M K K N N
3 eluzelz M K M
4 3 adantr M K K N M
5 eluzle K N N K
6 5 adantl M K K N N K
7 eluzle M K K M
8 7 adantr M K K N K M
9 eluzelz K N K
10 zletr N K M N K K M N M
11 1 9 4 10 syl2an23an M K K N N K K M N M
12 6 8 11 mp2and M K K N N M
13 eluz2 M N N M N M
14 2 4 12 13 syl3anbrc M K K N M N