Metamath Proof Explorer


Theorem uztrn2

Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013)

Ref Expression
Hypothesis uztrn2.1 Z = K
Assertion uztrn2 N Z M N M Z

Proof

Step Hyp Ref Expression
1 uztrn2.1 Z = K
2 1 eleq2i N Z N K
3 uztrn M N N K M K
4 3 ancoms N K M N M K
5 2 4 sylanb N Z M N M K
6 5 1 eleqtrrdi N Z M N M Z