Metamath Proof Explorer


Theorem uzwo

Description: Well-ordering principle: any nonempty subset of an upper set of integers has a least element. (Contributed by NM, 8-Oct-2005)

Ref Expression
Assertion uzwo S M S j S k S j k

Proof

Step Hyp Ref Expression
1 breq1 h = M h t M t
2 1 ralbidv h = M t S h t t S M t
3 2 imbi2d h = M S M ¬ j S t S j t t S h t S M ¬ j S t S j t t S M t
4 breq1 h = m h t m t
5 4 ralbidv h = m t S h t t S m t
6 5 imbi2d h = m S M ¬ j S t S j t t S h t S M ¬ j S t S j t t S m t
7 breq1 h = m + 1 h t m + 1 t
8 7 ralbidv h = m + 1 t S h t t S m + 1 t
9 8 imbi2d h = m + 1 S M ¬ j S t S j t t S h t S M ¬ j S t S j t t S m + 1 t
10 breq1 h = n h t n t
11 10 ralbidv h = n t S h t t S n t
12 11 imbi2d h = n S M ¬ j S t S j t t S h t S M ¬ j S t S j t t S n t
13 ssel S M t S t M
14 eluzle t M M t
15 13 14 syl6 S M t S M t
16 15 ralrimiv S M t S M t
17 16 adantr S M ¬ j S t S j t t S M t
18 uzssz M
19 sstr S M M S
20 18 19 mpan2 S M S
21 eluzelz m M m
22 breq1 j = m j t m t
23 22 ralbidv j = m t S j t t S m t
24 23 rspcev m S t S m t j S t S j t
25 24 expcom t S m t m S j S t S j t
26 25 con3rr3 ¬ j S t S j t t S m t ¬ m S
27 ssel2 S t S t
28 zre m m
29 zre t t
30 letri3 m t m = t m t t m
31 28 29 30 syl2an m t m = t m t t m
32 zleltp1 t m t m t < m + 1
33 peano2re m m + 1
34 28 33 syl m m + 1
35 ltnle t m + 1 t < m + 1 ¬ m + 1 t
36 29 34 35 syl2an t m t < m + 1 ¬ m + 1 t
37 32 36 bitrd t m t m ¬ m + 1 t
38 37 ancoms m t t m ¬ m + 1 t
39 38 anbi2d m t m t t m m t ¬ m + 1 t
40 31 39 bitrd m t m = t m t ¬ m + 1 t
41 27 40 sylan2 m S t S m = t m t ¬ m + 1 t
42 eleq1a t S m = t m S
43 42 ad2antll m S t S m = t m S
44 41 43 sylbird m S t S m t ¬ m + 1 t m S
45 44 expd m S t S m t ¬ m + 1 t m S
46 con1 ¬ m + 1 t m S ¬ m S m + 1 t
47 45 46 syl6 m S t S m t ¬ m S m + 1 t
48 47 com23 m S t S ¬ m S m t m + 1 t
49 48 exp32 m S t S ¬ m S m t m + 1 t
50 49 com34 m S ¬ m S t S m t m + 1 t
51 50 imp41 m S ¬ m S t S m t m + 1 t
52 51 ralimdva m S ¬ m S t S m t t S m + 1 t
53 52 ex m S ¬ m S t S m t t S m + 1 t
54 26 53 sylan9r m S ¬ j S t S j t t S m t t S m t t S m + 1 t
55 54 pm2.43d m S ¬ j S t S j t t S m t t S m + 1 t
56 55 expl m S ¬ j S t S j t t S m t t S m + 1 t
57 21 56 syl m M S ¬ j S t S j t t S m t t S m + 1 t
58 20 57 sylani m M S M ¬ j S t S j t t S m t t S m + 1 t
59 58 a2d m M S M ¬ j S t S j t t S m t S M ¬ j S t S j t t S m + 1 t
60 3 6 9 12 17 59 uzind4i n M S M ¬ j S t S j t t S n t
61 breq1 j = n j t n t
62 61 ralbidv j = n t S j t t S n t
63 62 rspcev n S t S n t j S t S j t
64 63 expcom t S n t n S j S t S j t
65 64 con3rr3 ¬ j S t S j t t S n t ¬ n S
66 65 adantl S M ¬ j S t S j t t S n t ¬ n S
67 60 66 sylcom n M S M ¬ j S t S j t ¬ n S
68 ssel S M n S n M
69 68 con3rr3 ¬ n M S M ¬ n S
70 69 adantrd ¬ n M S M ¬ j S t S j t ¬ n S
71 67 70 pm2.61i S M ¬ j S t S j t ¬ n S
72 71 ex S M ¬ j S t S j t ¬ n S
73 72 alrimdv S M ¬ j S t S j t n ¬ n S
74 eq0 S = n ¬ n S
75 73 74 syl6ibr S M ¬ j S t S j t S =
76 75 necon1ad S M S j S t S j t
77 76 imp S M S j S t S j t
78 breq2 t = k j t j k
79 78 cbvralvw t S j t k S j k
80 79 rexbii j S t S j t j S k S j k
81 77 80 sylib S M S j S k S j k